
Optimizing Applications on Blue Waters

Robert Brunner, Galen Arnold, Victor Anisimov,
Tom Cortese, Manisha Gajbe, Andriy Kot, NCSA

May 22, 2013

Y

X

Z	

HT
3 HT

3
Node	
 Characteris1cs	

Number	
 of	
 Cores	
 16	
 Core	
 modules	

Peak	
 Performance	
 313	
 Gflops/sec	

Memory	
 Size	
 4	
 GB	
 per	
 core-­‐mod	

64	
 GB	
 per	
 node	

Memory	

Bandwidth(Peak)	

102.4	
 GB/sec	

Cray XE6 Blade and Node

 2 CPU Arcitecture

•  Each processor die is
composed of 4 core modules

•  The 4 core modules share a
memory controller and 8 MB
L3 data cache on one die

•  Two die are packaged on a
multi-chip module to form a
G34-socket Interlagos
processor

•  Package contains
•  8 core modules
•  16 MB L3 Cache
•  4 DDR3 1600 memory

channels

Interlagos Processor

3

Shared L3 C
ache

NB/HT Links Memory
Controller

Shared L3 C
ache

NB/HT Links Memory
Controller

CPU Arcitecture

Interlagos Processor

4 CPU Architecture

Shared L3 C
ache

NB/HT Links Memory Controller

•  Four Core Modules per die
•  Two Integer cores and one

FP core per Core Module
•  OS treats each Interlagos as

16 cores (i.e. 32 per XE6
node)

•  Each die shares L3 cache

Cray XK7 Compute Node

 5

Y	

X	

Z	

HT3
HT3

PCIe Gen2

XK7	
 Compute	
 Node	

Characteris1cs	

AMD	
 Series	
 6200	
 (Interlagos)	
 Core	

Module	

NVIDIA	
 Kepler	
 	

Host	
 Memory	
 -­‐	
 32GB	

1600	
 MHz	
 DDR3	

NVIDIA	
 Memory	

6GB	
 GDDR5	
 capacity	

Gemini	
 High	
 Speed	
 Interconnect	

Upgradeable	
 to	
 future	
 GPUs	

GPU Architecture

XK7 Characteristics

•  GPU: NVIDIA K20X
•  2688 processor cores
•  Processor core clock: 732 MHz
•  Memory clock: 2.6 GHz
•  Memory bandwidth: 250 GB/sec
•  6 GB ECC RAM GPU Memory
•  Compute Capability 3.5
•  GPUDirect not supported yet, CUDA_PROXY mode

•  CPU: AMD Interlagos
•  8 Core Modules, 32 GB RAM
•  156 GFLOPS

6 GPU Architecture

Compiler Options - Topics

•  Available (Supported) Compilers
•  Where to Start
•  Compiler Choices – Relative Strength
•  Compiler Options focused on

•  Optimization
•  Debugging

7 Compiler Optimization

Available Compilers

•  Cray Compilers (Cray Compiling Environment (CCE))
•  Provided additonal support for fortran 2003, Co-arrays, UPC,

PGAS
•  GNU Compiler Collection (GCC)
•  Portland Group Inc (PGI) Compilers
•  All provide Fortran, C, C++, OpenMP support
•  UPC, PGAS, (limited) OpenACC support (Cray, PGI)
•  So which compiler do I choose?

•  Experiment with various compilers
•  Work with your BW POC
•  Mixing libraries created by different compilers may cause issues

8 Compiler Optimization

Where to Start

•  Unless you have a very good reason, always use compiler
wrappers
•  Additional libraries are automatically linked in
•  Optimization targets automatically set

•  For most applications, using default settings work very
well

9 Compiler Optimization

Compilers Where to Start

•  Load the proper architecture
•  For BW default : xtpe-interlagos (automatic)
•  If the module is not loaded and no arch is specified in the

compiler options, the compilers default to the node type on
which the compiler is running, which may not be same as
the compute nodes. On BW, they are the same

•  The OpenMP threaded BLAS/LAPACK libraries are used
•  The serial version is used if “OMP_NUM_THREADS” is not set

or set to 1

10 Compiler Optimization

Use the Best Compiler

•  The best compiler may not be the same for every
application.

•  Work with your BW POC to compare compilers

11 Compiler Optimization

Compiler Choices – Relative Strength
•  CCE – Outstanding fortran, Very good C and okay C++

•  Very good vectorization
•  Very good fortran language support; only real choice for

coarrays
•  C support is very good, with UPC support
•  Very good scalar optimization and automatic parallelization
•  Clean implementation of OpenMP 3.0 with tasks
•  Cleanest integration with other Cray tools (Performance tools,

debuggers, upcoming productivity tools)
•  No inline assembly support
•  Excellent support from Cray (bugs, issues, performance etc)

12 Compiler Optimization

Compiler Choices – Relative Strength
•  PGI – Very good fortran, okay C and C++

•  Good vectorization
•  Good functional correctness with optimization

enabled
•  Good manual and automatic prefetch capabilities
•  Company focused on HPC market
•  Excellent working relationship with Cray, good bug

responsiveness

13 Compiler Optimization

Compiler Choices – Relative Strength
•  GNU – so-so-fortran, outstanding C and C++ (If

you ignore vectorization)
•  Obviously, the best gcc compatibility
•  Scalable optimizer was recently rewritten and is

very good
•  Vectiorization capabilities focus mostly on inline

assembly
•  Few releases have been incompatible with each

other and require recompilation of modules (4.3,
4.4, 4.5)

14 Compiler Optimization

Recommended CCE Compilation Options
•  Use default optimization levels

•  It’s the equivalent of most other compilers –O3 or –fast
•  Use –O3, fp3 (or –O3 –hfp3 or some variation)

•  -O3 gives slightly more than –O2
•  -hfp3 gives a lot more floating point optimizations, esp 32 bit

•  If an application is intolerant of floating point reassociation, try lower
hfp number, try hfp1 first, only hfp0 if absolutely necessary

•  Might be needed for tests that require strict IEEE conformance
•  Or applications that have validated results from diffferent compiler

•  Do not suggest using -Oipa5, -Oaggress and so on; higher
numbers are not always correlated with better performance

•  Compiler feedback : -rm (fortran), -hlist=m (C)
•  If don’t want OpenMP : -xomp or –Othread0 or –hnoomp
•  Manpages : crayftn, craycc, crayCC

15 Compiler Optimization

Loopmark : Compiler Feedback (CCE)
•  Compiler can generate an filename.lst file
•  Contains annotated listing of your source code with letter indicating

important optimizations
•  Loopmark legend

16 Compiler Optimization

Primary Loop Type
---------- ------- ------
A - Pattern matched

C – Collapsed
D – Deleted
E – Cloned
G – Accelerated
I - Inlined
M - Multithreaded
V – Vectorized

Modifiers

a - atomic memory operation
b – blocked
c - conditional and/or computed

f – fused
g – partitioned
i – interchanged
m – partitioned
n - non-blocking remote transfer
p – partial
r – unrolled
s – shortloop
w - unwound

Starting Point for PGI Compilers
•  Suggested Option : -fast
•  Interprocedural analysis allows the compiler to perform

whole program optimizations : –Mipa=fast(,safe)
•  If you can be flexible with precision, also try –Mfprelaxed
•  Option –Msmartalloc, calls the subroutine mallopt in the

main routine, can have a dramatic impact on the
performance of program that uses dynamic allocation of
memory

•  Compiler feedback : -Minfo=all, -Mneginfo
•  Manpages : pgf90, pgcc, pgCC

17 Compiler Optimization

PGI Compiler Flags

•  -default64 : Fortran driver option for –i8 and –r8
•  -i8, -r8 : Treats INTEGER and REAL variables in

Fortran as 8 bytes (use ftn –default64 option to
link the right libraries

•  -byteswapio : Reads big endian files in fortran
•  -Mnomain : Uses ftn driver to link programs with

the main program (written in C or C++) and one
or more subroutines (written in fortran)

18 Compiler Optimization

PGI Compiler Flags
•  It is possible to disable optimizations included with –fast,

for example –fast –Mnolre enables –fast and then
disables loop redundant optimizations

•  -Mconcur, -mprof=mpi, -Mmpi and –Mscalapack are no
more supported

•  Fortran interfaces can be called from C program by
inserting an underscore to the respective name

•  Pass argument by reference rather than by value
•  For example to call dgetrf()
•  Dgetrf_(&uplo, &M, &n, ……);
•  To debug an optimized code, the –opt flag will insert

debugging information without disabling optimizations
19 Compiler Optimization

PGI Compiler Flags
•  Some compiler options mat affect both performance and

accuracy
•  Lower accuracy is often higher performance, but it also

able to enforce accuracy
•  -Kieee : all floating point (FP) math strictly conforms to

IEEE , off by default
•  -Ktrap : Turns processor trapping of FP exceptions
•  -Mdaz : Treat all denormalized numbers as zeros
•  Mflushz : Set SSE to flush-to-zero (on with –fast)
•  -Mfprelaxed : allow to use relaxed (reduced) precision to

speed up some floating point optimizations
•  Some compilers turn this on by default, PGI chooses to favor

accuracy to speed, by default
20 Compiler Optimization

Starting Point for GNU Compilers
•  -O3 –ffast-math –funroll-loops
•  Compiler feedback : -ftree-vectorizer-verbose=2
•  Manpages : gfortran, gcc, g++

21 Compiler Optimization

Numerical Libraries Overview

•  Many commonly-used packages are available on
Blue Waters

•  Typically can link with most or all combinations of
compiler, language, and parallel programming model

•  Use the “module” command to select a particular
version

•  Will try to accommodate special installation requests
(can’t install “Everything under the Sun” due to
scalibility and other considerations)

22 Performance Libraries

Cray Scientific Library (libsci)

•  Contains optimized versions of several popular
scientific software routines

•  Available by default; can change versions with
“module avail” and “module load
xt‑libsci[/version]”
•  BLAS, BLACS
•  LAPACK, ScaLAPACK
•  FFT, FFTW

•  Unique to Cray (affects portability)
•  CRAFFT, CASE, IRT

23 Performance Libraries

PETSc (Argonne National Laboratory)
•  Programmable, Extensible Toolkit for Scientific

Computing
•  Widely-used collection of many different types of linear

and non-linear solvers
•  Actively under development; very responsive team
•  Can also interface with numerous optional external

packages (e.g., SLEPC, HYPRE, ParMETIS, …)
•  Optimized version installed by Cray, along with many

external packages
•  Use “module load petsc[/version]”

24 Performance Libraries

Other Numerical Libraries

•  ACML (AMD Core Math Library)
•  BLAS, LAPACK, FFT, Random Number Generators

•  Trilinos (from Sandia National Laboratories)
•  Somewhat similar to PETSc, interfaces to a large

collection of preconditioners, solvers, and other
computational tools

•  GSL (GNU Scientific Library)
•  Collection of numerous computational solvers and tools for

C and C++ programs
•  All available using “module load”

25 Performance Libraries

Optimization options
•  Hybrid programming model (MPI+OpenMP, et al) is usually better

•  Try 1, 2, 4, 16, 32 tasks per node

 For 1024 nodes:

 32 tasks+threads/node:

 aprun –n 4096 –N 4 –d 8 ./myprog

 16 tasks+threads/node:

 aprun –n 4096 –N 4 –d 4 \

 –cc 0,2,4,6:8,10,12,14:16,18,20,22:24,26,28,30 \
 ./myprog

•  Try using –r 1 to reserve a core for the OS

 aprun –n 4096 –N 4 –d 7 –r 1 \
 –cc 0-6:8-14:16-22:24-30 ./myprog

•  Test different compilers, flags

•  Use accelerators

26 Presentation Title

27

OpenACC compiler support

 Cray
 Module load PrgEnv-cray craype-accel-nvidia35

–  Fortran
• -h acc, noomp # openmp is enabled by default, be careful mixing
• -fpic -dynamic
• -rm # include a .lst listing file to show the loop markup
• -G2 # -g has been observed to break Cray OpenACC code

–  C
• -h pragma=acc -h nopragma=omp
• -fpic -dynamic
• -h msgs # show loop markup in stdout/stderr
• -Gp # bonus points to the person who synchronizes Cray compiler flags
between fortran and c...

Cray -rm # loop mark
arnoldg@h2ologin2:~/Mori/pic2.0-acc-f> ftn -h acc -rm -c push2.f

!$acc parallel num_gangs(1) vector_length(3072)
ftn-7271 crayftn: WARNING GPUSH2L, File = push2.f, Line = 145
 Unsupported OpenACC vector_length expression: Converting 3072 to 1024.

arnoldg@h2ologin2:~/Mori/pic2.0-acc-f> grep --after-context=5 '!$acc parallel num_gangs(1) vector_length(3072)' push2.lst
 145. + G----------< !$acc parallel num_gangs(1) vector_length(3072)
ftn-7271 ftn: WARNING File = push2.f, Line = 145
 Unsupported OpenACC vector_length expression: Converting 3072 to 1024.

 146. G !!$acc kernels
 147. G !!data copy(part),copyin(fxy),create(nn,mm,dxp,dyp,np,mp,dx,dy,vx,vy)
arnoldg@h2ologin2:~/Mori/pic2.0-acc-f> grep 'line 145 ' push2.lst
 A region starting at line 145 and ending at line 240 was placed on the accelerator.

arnoldg@h2ologin2:~/Mori/pic2.0-acc-f>

29

OpenACC compiler support

 PGI
 Module load PrgEnv-pgi cudatoolkit

–  Cudatoolkit is required, PGI is creating CUDA code as intermediate
• -ta=nvidia,keepgpu,keepptx

–  Fortran , C # nice
• -acc -ta=nvidia
• -mcmodel=medium
• -Minfo=accel

GNU
–  Don't touch that dial!

PGI -Minfo=accel

arnoldg@h2ologin2:~/Mori/pic2.0-acc-f> ftn -acc -ta=nvidia -Minfo=accel -c push2.f
gpush2l:
 145, Accelerator kernel generated
 145, CC 1.3 : 18 registers; 112 shared, 32 constant, 0 local memory bytes
 CC 2.0 : 26 registers; 0 shared, 132 constant, 0 local memory bytes
 148, !$acc loop vector(3072) ! blockidx%x threadidx%x
 169, Sum reduction generated for sum1
 145, Generating present_or_copy(part(:4,:nop))
 Generating present_or_copyin(fxy(:,:,:))
 Generating compute capability 1.3 binary
 Generating compute capability 2.0 binary
 148, Loop is parallelizable

CUDA is a parallel computing platform

•  NVIDIA Kepler K20X accelerators
•  XK nodes support CUDA compute capability 3.5
•  CUDA C code should be compiled with nvcc
•  Cray provides cc and CC wrappers for C/C++ that

include support for MPI and OpenMP (use cc and
CC instead of mpicc)

•  Dynamic linking (static linking is not supported)

31 CUDA

Tips for NVIDIA Kepler K20x GPUs

•  CRAY_CUDA_PROXY=[0|1] default=1 (On) - multiple MPI
tasks accessing same GPU on the node; turn to off (0) - single MPI
task accessing GPU

•  LD_LIBRARY_PATH=
$CRAY_LD_LIBRARY_PATH:
$LD_LIBRARY_PATH

•  MPICH_RDMA_ENABLED_CUDA=[0|1]
 Allows the MPI application to pass GPU pointers directly to point to-

point and collective communication functions. If the send or receive
buffer for a point-to-point or collective communication is on the GPU,
the network transfer and the transfer between the host CPU and the
GPU are pipelined to improve performance.

32 CUDA

Building CUDA Applications on Cray

•  Setup CUDA programming environment
 module load cudatoolkit
 module show cudatoolkit

•  Build CUDA code using PGI compiler
 module load PrgEnv-pgi

NVIDIA example: simpleMPI.cpp simpleMPI.cu simpleMPI.h
nvcc -c -gencode arch=compute_35,code=compute_35 –o

 simpleMPIcuda.o simpleMPI.cu
CC -o simpleMPI.x simpleMPI.cpp simpleMPIcuda.o
Rule: keep all MPI staff in C++ files and CUDA kernels in CU-files

33 CUDA

Building GPU-to-GPU Application

OSU micro-benchmarks: osu_latency_39.c
Download link http://mvapich.cse.ohio-state.edu/benchmarks/
module swap PrgEnv-cray PrgEnv-gnu
module swap cray-mpich2 cray-mpich2/5.6.4
module load cudatoolkit
export LD_LIBRARY_PATH=$CRAY_LD_LIBRARY_PATH:

 $LD_LIBRARY_PATH
export MPICH_RDMA_ENABLED_CUDA=1
export CRAY_CUDA_PROXY=1
cc -D_ENABLE_CUDA_ -o osu_latency39.x osu_latency_39.c –lcudart
aprun -n 2 -N 1 ./osu_latency39.x D D > job39.out

34 CUDA

PGI CUDA Fortran

Extension of F90 standard by CUDA language constructs
CUDA Fortran file has extension .CUF (compare to .F90)

Building CUDA Fortran application on Cray
wget http://www.pgroup.com/lit/samples/matmul.CUF
module swap PrgEnv-cray PrgEnv-pgi
module add cudatoolkit
pgfortran -ta=nvidia,kepler matmul.CUF -L/opt/cray/nvidia/default/lib64

#PBS -l nodes=1:ppn=16:xk
aprun -n 1 -N 1 ./matmul.x > job.out

35 CUDA

OpenCL

•  Limited support from Cray (not documented)
•  Included with CUDA

module load PrgEnv-gnu cudatoolkit
cc –c -I$CUDATOOLKIT_HOME/include hello.c
cc hello.o -L/opt/cray/nvidia/default/lib64 –lOpenCL –o hello

36 OpenCL

The End

37 Presentation Title

